
 New  = 2 supersymmetric membrane flow in eleven-dimensional supergravity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP11(2009)022

(http://iopscience.iop.org/1126-6708/2009/11/022)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:34

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/11
http://iopscience.iop.org/1126-6708/2009/11/022/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
1
1
(
2
0
0
9
)
0
2
2

Published by IOP Publishing for SISSA

Received: September 22, 2009

Accepted: October 21, 2009

Published: November 5, 2009

New N = 2 supersymmetric membrane flow in

eleven-dimensional supergravity

Changhyun Ahn

Department of Physics, Kyungpook National University,

Taegu 702-701, Korea

E-mail: ahn@knu.ac.kr

Abstract: We construct the 11-dimensional lift of the known N = 2 supersymmetric RG

flow solution in 4-dimensional N = 8 gauged supergravity. The squashed and stretched

7-dimensional internal metric preserving SU(2) × U(1) × U(1)R symmetry contains an

Einstein-Kahler 2-fold which is a base manifold of 5-dimensional Sasaki-Einstein Y p,q space

found in 2004. The nontrivial r(transverse to the domain wall)-dependence of the AdS4

supergravity fields makes the Einstein-Maxwell equations consistent not only at the critical

points but also along the supersymmetric whole RG flow connecting two critical points.

With an appropriate 3-form gauge field, we find an exact solution to the 11-dimensional

Einstein-Maxwell equations corresponding to the above lift of the SU(2) × U(1) × U(1)R-

invariant RG flow. The particular limits of this solution give rise to the previous solutions

with SU(3) × U(1)R or SU(2) × SU(2) × U(1)R.

Keywords: AdS-CFT Correspondence, M-Theory

ArXiv ePrint: 0909.3745

c© SISSA 2009 doi:10.1088/1126-6708/2009/11/022

mailto:ahn@knu.ac.kr
http://arxiv.org/abs/0909.3745
http://dx.doi.org/10.1088/1126-6708/2009/11/022


J
H
E
P
1
1
(
2
0
0
9
)
0
2
2

Contents

1 Introduction 1

2 An N = 2 supersymmetric SU(2) × U(1) × U(1)R-invariant flow in an

11-dimensional theory 3

3 Conclusions and outlook 11

A The Ricci tensor in frame basis 13

B The 4-form field strength in frame basis 14

1 Introduction

The N = 6 U(N) × U(N) Chern-Simons matter theory with level k in 3-dimensions is

described as the low energy limit of N M2-branes at C4/Zk singularity [1]. When k = 1, 2,

the full N = 8 supersymmetry is preserved while for k > 2, the supersymmetry is broken

to the N = 6 supersymmetry. The matter contents and the superpotential of this theory

are the same as for the D3-branes on the conifold [2]. The RG flow between the UV point

and the IR point of the 3-dimensional gauge theory can be determined from the gauged

N = 8 supergravity in 4-dimensions via AdS/CFT correspondence [3]. The holographic

supersymmetric RG flow equation connecting N = 8 SO(8) point to N = 2 SU(3) × U(1)

point has been studied in [4, 5] where the U(1) symmetry here can be identified with U(1)R
symmetry of 3-dimensional theory coming from the N = 2 supersymmetry while those from

N = 8 SO(8) point to N = 1 G2 point has been studied in [5, 6]. The 11-dimensional

M-theory lifts of these RG flow equations have been found in [6, 7] by solving the Einstein-

Maxwell equations in 11-dimensions with nonzero field strengths in the internal space.

The mass deformed U(2) × U(2) Chern-Simons matter theory with level k = 1, 2 pre-

serving global SU(3)×U(1)R symmetry has been studied in [8, 9] while the mass deforma-

tion for this theory preservingG2 symmetry has been described and the nonsupersymmetric

RG flow equations preserving SO(7)± symmetries have been discussed in [10]. The holo-

graphic RG flow equations connecting N = 1 G2 point to N = 2 SU(3) × U(1)R point

have been found in [11]. Moreover, the N = 4 and N = 8 RG flows have been studied and

further developments on the gauged N = 8 supergravity in four-dimensions have been done

in [12]. Recently, the spin-2 Kaluza-Klein modes around a warped product of AdS4 and a

seven-ellipsoid which has global G2 symmetry are discussed in [13]. Furthermore, the gauge

dual with the symmetry of SU(2) × SU(2) × U(1)R for the second 11-dimensional lift of

N = 2 SU(3)×U(1)R-invariant solution in 4-dimensional supergravity is described in [14].
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The seven-sphere S7 in the internal space can be realized by S1-fibration over CP3 [15]

space where the standard Fubini-Study metric on the CP3 space has CP2 space [7, 16] or

CP1 ×CP1 space [7, 17]. In particular, the U(1) bundle over CP1 ×CP1 space is known

as 5-dimensional Sasaki-Einstein T 1,1 space [18]. In [7], they have found two different 11-

dimensional solutions where the first has CP2 space with SU(3) × U(1)R symmetry and

the second has CP1 × CP1 space with SU(2) × SU(2) × U(1)R symmetry. Note that the

Ricci tensor for the first solution with frame basis is exactly the same as the one of the

second solution, by assuming that the supergravity fields satisfy the same equations of

motion discovered by [4]. In other words, the same flow equations in 4-dimensions provide

two different 11-dimensional solutions to the equations of the 11-dimensional supergravity.

When we go to 11-dimensional theory from the 4-dimensional gauged supergravity,

the various 11-dimensional solutions will occur even if the 4-dimensional flow equations

are the same. We expect that since the flow equations in 4-dimensions are related to

the N = 2 supersymmetry via U(1)R symmetry, other types of 11-dimensional solutions

with common 4-dimensional flow equations will arise. One possibility, as we mentioned

in [14], is characterized by the SU(2) × U(1) × U(1)R symmetry which is smaller than

SU(2)× SU(2)×U(1)R. The symmetry breaking to SU(2)×U(1)×U(1)R can occur from

either the SU(3) × U(1)R symmetry or SU(2) × SU(2) × U(1)R symmetry. The metric

corresponding to CP1 × CP1 should preserve only one of two CP1’s symmetries due to

the single SU(2) symmetry.

In this paper, we would like to construct a new 11-dimensional solution preserving the

above SU(2) × U(1) × U(1)R symmetry. By assuming that the AdS4 supergravity fields

satisfy the supersymmetric RG flow equations, we should find out the correct 7-dimensional

internal space possessing this global symmetry. By realizing that the five-dimensional

Sasaki-Einstein T 1,1 space can be generalized to the 5-dimensional Sasaki-Einstein Y p,q

space [19] where p and q are positive integers with 0 ≤ q ≤ p, it is obvious to consider this

space first. When p = 1 and q = 0, the Y 1,0 space is nothing but T 1,1 space and moreover

the isometry of Y p,q is identical to the above SU(2) × U(1) × U(1)R. The main procedure

given in [7] is to start with the round compactification in terms of U(1)-fibration over the

Einstein-Kahler 3-fold, to squash this Einstein-Kahler base ellipsoidally, to stretch the U(1)

fiber, and to introduce 3-form tensor gauge potential proportional to the volume form on

the base. Inside of Einstein-Kahler 3-fold, one had either CP2 space or CP1 ×CP1 space.

Are there any other Einstein-Kahler 2-folds?

Fortunately, in the construction of Y p,q space, it is known that Y p,q space can be

written in terms of U(1) bundle over the Einstein-Kahler 2-fold. Therefore, there is a room

for this 4-dimensional Einstein-Kahler 2-fold inside of above Einstein-Kahler 3-fold. Then

the next step is to find out the correct 4-form field strengths in this background. Before

we use the 11-dimensional Einstein-Maxwell equations directly, it is better to imitate the

3-forms appeared in previous CP2 or CP1 ×CP1 cases. Basically the structure of 3-form

from the triple wedge product between the orthonormal frames looks similar to each other.

The overall functional dependence on the AdS4 supergravity fields and the exponential

factors corresponding to unbroken U(1) symmetries can be determined by solving the 11-

dimensional Einstein-Maxwell equations directly.
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In section 2, starting with the two parts of Y p,q space metric, U(1) bundle and the 4-

dimensional base space which is Einstein-Kahler 2-fold, we put them inside of the squashed

and stretched 7-dimensional internal space appropriately. Then one determines the full 11-

dimensional metric with the correct warp factor. Assuming that the two AdS4 supergravity

fields satisfy the domain wall solutions, one computes the Ricci tensor in this background

completely. For the 4-form field strengths, one makes an ansatz by writing the three

parts, 1) the overall function, 2) the exponential function with U(1)’s and 3) the triple

wedge product between the orthonormal frames. Eventually, the 11-dimensional Einstein-

Maxwell equations determine all the undetermined quantities.

In section 3, we summarize the results of this paper and make some future directions.

In the appendix, we present the detailed expressions for the Ricci tensor and 4-form

field strengths.

2 An N = 2 supersymmetric SU(2) × U(1) × U(1)R-invariant flow in an

11-dimensional theory

When the 11-dimensional supergravity is reduced to 4-dimensional N = 8 gauged super-

gravity, the 4-dimensional spacetime metric contains a warp factor which depends on both

4-dimensional spacetime coordinates and 7-dimensional internal space coordinates. The in-

ternal metric of deformed seven-sphere can be obtained from the AdS4 supergravity data,

the supergravity fields (ρ, χ), using the explicit formula [20], and the warp factor is also

determined. We have

ds211 = ∆(r, µ)−1
(
dr2 + e2A(r) ηµν dx

µdxν
)

+ L2
√

∆(r, µ) ds27(ρ, χ), (2.1)

where the 3-dimensional metric is given by ηµν = (−,+,+), the radial variable r = x4 is

the coordinate transverse to the domain wall, the scale factor A(r) behaves linearly in r

at UV and IR regions, L is a radius of round seven-sphere S7 and the warp factor ∆(r, µ)

also depends on the µ that is one of the internal coordinates(µ = x5) as well as the radial

coordinate r via the supergravity fields (ρ, χ).

Let us assume that the supergravity fields (ρ, χ) in 4-dimensions satisfy the supersym-

metric RG flow equations [4] with SU(3) × U(1)R symmetry in the convention of [7]:

dρ

dr
=

1

8Lρ

[
(cosh(2χ) + 1) + ρ8 (cosh(2χ) − 3)

]
,

dχ

dr
=

1

2Lρ2
(ρ8 − 3) sinh(2χ),

dA

dr
=

1

4Lρ2

[
3(cosh(2χ) + 1) − ρ8(cosh(2χ) − 3)

]
. (2.2)

In 4-dimensions, there exist two critical points, N = 8 SO(8) critical point at which

(ρ, χ) = (1, 0) and N = 2 SU(3) × U(1)R critical point at which (ρ, χ) = (3
1

8 , 1
2 cosh−1 2).

One can easily check that at these two points, dρ
dr

and dχ
dr

vanish due to the right hand sides

of (2.2) are equal to zero. Furthermore, the criticality can be observed from the fact that the

first two right hand sides of (2.2) can be written as the derivatives of superpotential W (ρ, χ)

– 3 –
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with respect to the field ρ and the field χ respectively. One can read off the superpotential

W (ρ, χ) explicitly by realizing that the right hand side of third equation in (2.2) is equal

to − 2
L
W (ρ, χ). The superpotential has 1 and 3

3
4

2 at two critical values respectively. We

will see the 11-dimensional lift of this superpotential, geometric superpotential, later when

we discuss about the 11-dimensional field equations.

We need to find out the correct 7-dimensional metric which preserves SU(2) ×U(1) ×
U(1)R symmetry which maybe obtained from the symmetry breaking of above bigger sym-

metry SU(3)×U(1)R corresponding to the stretched five-sphere S5 described by U(1) bundle

over the CP2 or SU(2)×SU(2)×U(1)R symmetry corresponding to the stretched T 1,1 space

realized by U(1) bundle over CP1 ×CP1. Once we have found this 7-dimensional internal

metric with the warp factor given in [7], then the full 11-dimensional metric can be written

as (2.1). Then how one can find this internal metric with the above specific symmetry? It

is not obvious that the SU(2) symmetry among the full SU(2) × U(1) × U(1)R symmetry

is realized from CP2 space which preserves SU(3) symmetry. However, any CP1 factor in

CP1 ×CP1 space can provide this SU(2) symmetry because the CP1 preserves the SU(2)

symmetry. So, our strategy is to look at the second solution of [7] closely rather than the

first solution.

At first, let us replace the 4-dimensional CP1 × CP1 space appearing in the 7-

dimensional internal space in [7] with the 4-dimensional Einstein-Kahler 2-fold which lives

in the five-dimensional Y p,q space [19]. Next, we need to find out the correct one-form which

contains the U(1) bundle over this Einstein-Kahler 2-fold. This one-form ω is given by1

ω =
1

2
sin(2µ)

[
− 1

ρ(r)4
dα+ ρ(r)4 (u, Jdu)

]
, (2.3)

where we introduce the R8 vector u = (u1, · · · , u6, 0, 0) which parametrize a unit S5 sphere

and J is the Kahler form with J12 = J34 = J56 = J78 = 1. The product (u, Jdu) is defined

as (u, Jdu) ≡ uAJABu
B. Note that the one-form in subsection 4.1 of [7] is the U(1) bundle

over the 4-dimensional CP2 space while the one-form in eq. (4.38) of [7] is the U(1) bundle

over the 4-dimensional CP1 × CP1 space.

What is (u, Jdu) in (2.3) corresponding to the U(1) bundle over the Einstein-Kahler

2-fold? Let us recall the metric for the 5-dimensional Sasaki-Einstein space Y p,q with

c = 1 [19]

ds2Y p,q = ds2EK(2) +
1

9
[(dψ − cos θ dφ) + y (dβ + cos θ dφ)]2

=

[
1

6
(1 − y) (dθ2 + sin2 θ dφ2) +

1

w(y)q(y)
dy2 +

1

36
w(y)q(y) (dβ + cos θ dφ)2

]

+
1

9
[(dψ − cos θ dφ) + y (dβ + cos θ dφ)]2 , (2.4)

where y-dependent functions are given by

w(y) ≡ 2(a− y2)

1 − y
, q(y) ≡ a− 3y2 + 2y3

a− y2
, a =

1

2
− (p2 − 3q2)

4p3

√
4p2 − 3q2. (2.5)

1The 11-th coordinate α here corresponds to ψ introduced in [7].
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Also note that the form in the last line of (2.4) provides the Kahler 2-form and satisfies

1

6
d [− cos θ dφ+ y(dβ + cos θ dφ)] =

1

6
(1 − y) sin θ dθ ∧ dφ+

1

6
dy ∧ (dβ + cos θ dφ). (2.6)

Then it is natural to view that we identify (u, Jdu) with the U(1) bundle over this Einstein-

Kahler 2-fold as follows:

(u, Jdu) =
1

3
[(dψ − cos θ dφ) + y (dβ + cos θ dφ)] . (2.7)

By plugging (2.7) into (2.3), we have one-form ω explicitly.

Finally, we should write down the U(1) Hopf fiber (x, Jdx) on CP3(note that for ρ = 1

and χ = 0, the internal metric should contain a CP3 factor) where x = (x1, · · · , x8) is a

vector on R8 in terms of (u, Jdu) using [7]

(x, Jdx) = cos2 µ (u, Jdu) + sin2 µdα. (2.8)

One also introduces another vector v = (0, · · · , 0, cosα, sinα) in R8 and then the above x

can be written as x = u cosµ+ v sinµ. In (2.8), we used (v, Jdv) = dα. The 7-dimensional

internal space metric ds2(ρ, χ) without a warp factor can be written as

ds27(ρ, χ) = ρ(r)−4ξ2dµ2 + ρ(r)2 cos2 µds2EK(2) + ξ−2ω2 + ξ−2 cosh2 χ(r)(x, Jdx)2. (2.9)

Here we substituted the metric (2.4) for the Einstein-Kahler 2-fold where the four coordi-

nates are parametrized by (θ = x6, φ = x7, y = x8, β = x9) in the second term of (2.9).

After plugging the 1-form (2.3) with (2.7) in the third term of (2.9) and the U(1) Hopf

fiber (2.8) in the last term of (2.9), we obtain the final 7-dimensional internal metric pre-

serving SU(2) × U(1) × U(1)R symmetry as follows:

ds27(ρ, χ) = ρ(r)−4ξ(r, µ)2dµ2

+ρ(r)2 cos2 µ

[
1

6
(1−y)(dθ2+sin2 θdφ2)+

1

w(y)q(y)
dy2+

1

36
w(y)q(y)(dβ+cos θdφ)2

]

+ξ(r, µ)−2 1

4
sin2(2µ)

[
− 1

ρ(r)4
dα+ ρ(r)4

1

3
[(dψ − cos θdφ) + y(dβ + cos θdφ)]

]2

+ξ(r, µ)−2 cosh2 χ(r)

[
sin2 µdα+ cos2 µ

1

3
[(dψ − cos θdφ) + y(dβ + cos θdφ)]

]2

,

(2.10)

where the quadratic form ξ2 ≡ (x,Qx) with Q = diag(ρ(r)−2, · · · , ρ(r)−2, ρ(r)6, ρ(r)6) in

8-dimensional space can be computed and it is given by [7]

ξ(r, µ) =

√
X(r, µ)

ρ(r)
, X(r, µ) ≡ cos2 µ+ ρ(r)8 sin2 µ.

In (2.10), we explicitly presented the r-dependence in every place. The nontrivial squashing

characterized by ρ(r) deforms the metric on the CP3(by changing the variables appropri-

ately [19] one makes the 5-dimensional metric on Y p,q space as a U(1) bundle over the

– 5 –
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Fubini-Study metric on CP2, one obtains the usual round 5-sphere S5 and the first three

lines of (2.10) contain CP3 metric) and moreover rescales the Hopf fiber which appears

in the last line of (2.10). The stretching is characterized by χ(r). However, there exists

SU(2)×U(1) symmetry from the structure of Einstein-Kahler 2-fold in ds2
EK(2). The U(1)

symmetry is generated by the angle β. The combined two U(1) symmetries by the angle

ψ(= x10) and the angle α(= x11) will provide a single U(1)R symmetry which is relevant to

the N = 2 supersymmetry. We will return to this issue when we discuss about the 4-form

field strengths later.

For µ = 0, the 7-dimensional metric (2.10) reduces to the following metric on moduli

space for the M2-brane probe

ρ(r)2ds2Y p,q + ρ(r)2 sinh2 χ(r)
1

9
[(dψ − cos θ dφ) + y(dβ + cos θ dφ)]2 , (2.11)

where the metric for Y p,q is given by (2.4). In particular, the S5 or T 1,1 is replaced by Y p,q

and for large r the moduli space (2.11) approaches the Ricci-flat conifold. Now one sees

that the function sinh2 χ(r) plays the role of a stretching of the U(1)-fiber. Then on can

say, for this particular coordinate µ = 0, there exists a stretched five-sphere S5, a stretched

T 1,1 space or a stretched Y p,q space depending on the U(1)-fibers.

From these observations so far, we obtain the following set of frames for the 11-

dimensional metric (2.1):

e1 = − 1√
∆(r, µ)

eA(r) dx1, e2 =
1√

∆(r, µ)
eA(r) dx2, e3 =

1√
∆(r, µ)

eA(r) dx3,

e4 =
1√

∆(r, µ)
dr,

e5 = L2 4
√

∆(r, µ)

√
X(r, µ)

ρ(r)3
dµ,

e6 = L2 4
√

∆(r, µ) ρ(r) cosµ

√
1 − y

6
dθ,

e7 = L2 4
√

∆(r, µ) ρ(r) cosµ

√
1 − y

6
sin θ dφ,

e8 = L2 4
√

∆(r, µ) ρ(r) cosµ
1√

w(y) q(y)
dy,

e9 = L2 4
√

∆(r, µ) ρ(r) cosµ
1

6

√
w(y) q(y) (dβ + cos θ dφ), (2.12)

e10 = L2 4
√

∆(r, µ)
ρ(r)√
X(r, µ)

1

2
sin(2µ)

[
− dα

ρ(r)4
+

1

3
ρ(r)4 [(dψ−cos θdφ)+y(dβ+cos θdφ)]

]
,

e11 = L2 4
√

∆(r, µ)
ρ(r) coshχ(r)√

X(r, µ)

[
sin2 µdα+

1

3
cos2 µ [(dψ−cos θdφ)+y(dβ+cos θdφ)]

]
,

where the warp factor is given by [7]

∆(r, µ) =
ρ(r)

4

3

X(r, µ)
2

3 cosh
4

3 χ(r)
. (2.13)

– 6 –
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The constant L in (2.12) in the 7-dimensional internal space is determined by using the

symmetry of UV fixed point later.

Denoting the 11-dimensional metric as gMN with the convention (−,+, · · · ,+) and the

antisymmetric tensor fields as FMNPQ, the Einstein-Maxwell equations are given by [21]

R N
M =

1

3
FMPQRF

NPQR − 1

36
δNM FPQRSF

PQRS ,

∇MF
MNPQ = − 1

576
E ǫNPQRSTUVWXY FRSTUFVWXY , (2.14)

where the covariant derivative ∇M on FMNPQ in (2.14) is given by E−1∂M (EFMNPQ)

together with elfbein determinant E ≡ √−g11. The epsilon tensor ǫNPQRSTUVWXY with

lower indices is purely numerical. All the indices are based on the coordinate basis.

At the SO(8)-invariant UV fixed point [4]. For

ρ(r) = 1, χ(r) = 0, (2.15)

one should recover the maximally symmetric AdS4 × S7 solution. In general, one can

introduce the arbitrary coefficients in the frames e6 to e11 of (2.12). But these can be fixed

in order to make the Ricci tensor have the form

R N
M =

6

L2
diag(−2,−2,−2,−2, 1, 1, 1, 1, 1, 1, 1),

which fixes the round S7 radius to be L, twice the AdS4 radius, as expected. As Freund-

Rubin parametrization [22], the 3-form gauge field with 3-dimensional M2-brane indices

maybe defined by [7]

A(3) =
1

2
e

6r
L dx1 ∧ dx2 ∧ dx3. (2.16)

Note that at the UV end of the flow the function A(r) behaves as 2
L
r from the solution (2.2)

for A(r) and W = 1. The exponential factor e3A(r) will be compensated by the same factor

from the 11-dimensional metric when we derive the geometric superpotential along the

flow. From (2.16), one obtains the only nonzero component for the 4-form as F1234 = −18
L

.

At the SU(2)×U(1)×U(1)R-invariant IR fixed point [4] As we mentioned before,

there exists IR critical point characterized by

ρ(r) = 3
1

8 , χ(r) =
1

2
cosh−1 2. (2.17)

The 3-form gauge field with 3-dimensional M2-brane indices can be constructed as the UV

critical point. By realizing that at the IR end of the flow the function A(r) behaves as 3
3
4

L
r

from the solution (2.2) for A(r) and W = 3
3
4

2 (and we define L̂ ≡ 3−
3

4L), one writes down

the 3-form gauge field including the internal parts as follows [7]:

A(3) =
3

3

4

4
e

3r

L̂ dx1 ∧ dx2 ∧ dx3 + C(3) + (C(3))∗. (2.18)

– 7 –
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How does one determine the internal 3-form field C(3)? The Kahler form in (2.6) contains

e6 ∧ e7 and e8 ∧ e9 that lead to the natural basis of the one-forms and the CP3 factor for

ρ = 1 and χ = 0 has also e5 and e10 which can be combined together. In fact, we find

C(3) = −1

4
sinhχ(r) ei(α+ψ) (e5 − ie10) ∧ (e6 + ie7) ∧ (e8 + ie9). (2.19)

In general, the overall function depends on both ρ(r) and χ(r). However, the above expres-

sion (2.19) possesses only χ(r)-dependence. The coefficients for α and ψ in the exponent are

fixed as 1 and 1 respectively. We have considered the angle β also in the exponent but the

coefficient for this vanishes from 11-dimensional Einstein equation. Although the structure

of triple product (2.19) between the orthonormal basis looks very similar to the previous

constructions with SU(3) × U(1)R symmetry or SU(2) × SU(2) × U(1)R symmetry(up to

signs), the functional behavior of the exponential function, i.e., the rotations with U(1)

symmetries in the fields behave differently. It is interesting note that the overall function

contains sinhχ(r) which plays the role of a stretching U(1) fiber we described before.

Let us explain all these in detail. Let us go to the Ricci tensor first in the frame

basis we introduced in (2.12). The Ricci tensor has only two nonvanishing off-diagonal

components:R 11
10 and R 10

11 . There exists a nontrivial identity between these components. It

turns out the Ricci tensor is identical to the one with SU(3)×U(1)R symmetry or the one

with SU(2) × SU(2) × U(1)R symmetry. That is, the Ricci tensor for three cases has same

value (in the frame basis) at the IR critical point. Let us present them here for convenience:

R1
1 = −(55 − 32 cos 2µ+ 3cos 4µ)

3 · 2 1

3

√
3L̂2(2 − cos 2µ)

8

3

= R2
2 = R3

3 = R4
4 = −2R6

6 = −2R7
7 = −2R8

8 = −2R9
9,

R5
5 =

(29 − 16 cos 2µ)

3 · 2 1

3

√
3L̂2(2 − cos 2µ)

8

3

= R10
10, R11

10 = − 2 · 2 1

6 sin 2µ
√

3L̂2(2 − cos 2µ)
5

3

= R10
11,

R11
11 =

(80 − 64 cos 2µ+ 9cos 4µ)

3 · 2 1

3

√
3L̂2(2 − cos 2µ)

8

3

. (2.20)

All these depend on only µ(= x5) coordinate. One can also obtain the Ricci tensor in

coordinate basis that depends on y(= x8) and θ(= x6) as well as µ. Now it is ready

to use the 11-dimensional Einstein equation which is the first one of (2.14) where the

indices are based on the coordinate basis. One can transform this Einstein equation with

coordinate basis into the one with frame basis without any difficulty via (2.12). The

(10, 9) component of right hand side of Einstein equation is nonzero in general but the

corresponding R 9
10 from (2.20), which appears in the left hand side of Einstein equation,

vanishes. This implies that the coefficient of β should vanish and the coefficient of ψ should

be 1 in the exponent of 3-form (2.19). Then there exists a U(1) symmetry generated by

the angle β. Furthermore, by comparing the (10, 11) component of Einstein equation, the

coefficient for the angle α which is equal to 1 and the overall coefficient of 3-form that is

−1
4 are completely fixed. At the moment, one cannot determine the functional dependence

for sinhχ(r) in (2.19) because we are looking for the behavior at the critical point (2.17).

We return to this issue when we discuss about the RG flow later.
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The internal part of F (4) can be written as dC(3) +d(C(3))∗. The antisymmetric tensor

fields can be obtained from F (4) = dA(3) with (2.18). It turns out that the antisymmetric

field strengths have the following nonzero components in the orthonormal frame basis used

in (2.19) or in (2.12)

F1234 = − 3 · 2 1

3 · 3 3

4

L̂(2 − cos 2µ)
4

3

, F568 10 =
2

1

3 · 3 3

4 sin(α+ ψ) sin 2µ

L̂(2 − cos 2µ)
4

3

,= −F579 10,

F568 11 = −2
5

6 · 3 3

4 sin(α+ ψ)

L̂(2 − cos 2µ)
1

3

= −F579 11 = F69 10 11 = F78 10 11,

F569 10 =
2

1

3 · 3 3

4 cos(α+ ψ) sin 2µ

L̂(2 − cos 2µ)
4

3

= F578 10,

F569 11 = −2
5

6 · 3 3

4 cos(α+ ψ)

L̂(2 − cos 2µ)
1

3

= F578 11 = −F68 10 11 = F79 10 11, (2.21)

where the angle-dependences for α and ψ appear in the combination of (α+ψ) as observed

previously. One can make the two U(1) symmetries generated by α and ψ which preserve

this combination (α+ψ). Note that these 4-forms break the SU(2)×U(1)β×U(1)α×U(1)ψ
into SU(2) × U(1) × U(1)R where U(1) is generated by the angle β. It is obvious that

the invariance of U(1)β comes from the fact that (2.21) do not depend on the angle β

as we explained before. After substituting (2.21) into the right hand side of Einstein

equation (2.14) with frame basis (2.12) one reproduces the one of SU(3)×U(1)R case [7] or

SU(2)×SU(2)×U(1)R exactly. This feature is also expected since as we already mentioned,

the Ricci tensor for three independent cases is identical to each other. In other words, the

4-forms themselves are different from each other, their combinations appearing in the right

hand side of Einstein equation are the same. In particular, the 4-form given in (2.21)

looks very similar to the one of SU(2)× SU(2)×U(1)R symmetry case: same independent

components up to signs.

Along the SU(2) × U(1) × U(1)R-invariant RG flow. The nontrivial r-dependence

of supergravity fields (ρ, χ) via (2.2) requires that the 11-dimensional Einstein-Maxwell

equations become consistent with not only at the critical points but also along the super-

symmetric RG flow connecting the two critical points. For solutions with varying scalars,

the ansatz for the 4-form field strength will be more complicated. We will apply the cor-

rect ansatz for the 11-dimensional 3-form gauge field by acquiring the r-dependence of

the supergravity scalars and will derive the 11-dimensional Einstein-Maxwell equations

corresponding to the SU(2) × U(1) × U(1)R-invariant RG flow.

Let us take the 3-form ansatz as follows [7]:

A(3) = W̃ (r, µ) e3A(r) dx1 ∧ dx2 ∧ dx3 + C(3) + (C(3))∗, (2.22)

where C(3) is given by (2.19) as before. Then how does one determine the χ(r) depen-

dence appearing this 3-form? One puts an arbitrary function f(ρ(r), χ(r)) in front of this

3-form at the beginning. One also obtains the Ricci tensor from the 11-dimensional met-

ric (2.1) when the supergravity fields (ρ(r), χ(r)) vary with respect to the r-coordinate.
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They are given in (A.1) of the appendix A where all the derivative terms before us-

ing the flow equations disappear by constraining the conditions (2.2). When one needs

to have the second derivative terms for ρ(r), χ(r) or A(r), one should differentiate the

flow equations further and change the right hand side by using the flow equations again

and removing the derivative terms. The (10, 11) component of Einstein equation deter-

mines the function f(ρ(r), χ(r)). The R 11
10 component is given in (A.1) while the cor-

responding right hand side depends on this function and its derivative. One obtains

v(r)f(v(r))+(1−v(r)2)f ′(v(r)) = 0 where v(r) ≡ coshχ(r). This implies that the solution

f(v(r)) is exactly the same as sinhχ(r).

Now let us determine the exact form for the geometric superpotential introduced

in (2.22). Let us consider (4, 4), (4, 5) and (5, 5) components of Einstein equation. The

first and last ones contain W̃ 2, W̃ ∂rW̃ , (∂rW̃ )2 and (∂µW̃ )2 while the second one contains

W̃∂µW̃ and ∂rW̃∂µW̃ . By eliminating (∂rW̃ )2 from (4, 4) and (5, 5) components, one

obtains

W̃ (r, µ)

∂µ
= − 1

2ρ(r)2
[
cosh2 χ(r) + ρ(r)8(−2 + cosh2 χ(r))

]
sin 2µ. (2.23)

By integrating this (2.23) with respect to the µ coordinate, one gets

W̃ (r, µ) =
1

4ρ(r)2
[
cosh2 χ(r) + ρ(r)8(−2 + cosh2 χ(r))

]
cos 2µ+ g(r), (2.24)

where g(r) is an arbitrary function of r. How one can determine the function g(r)? By

recalling that the superpotential W (ρ, χ) in 4-dimensions has terms like ρ(r)6 or ρ(r)−2.

Then one makes further ansatz for g(r) as g(r) = ρ(r)−2 h1(χ(r)) + ρ(r)6 h2(χ(r)). Let us

insert these into the (4, 5) component of Einstein equation. Then the unknown functions

h1(χ(r)) and h2(χ(r)) are completely fixed and they are given by

h1(χ(r)) =
1

4
cosh2 χ(r), h2(χ(r)) =

1

8
(3 − cosh 2χ(r)) . (2.25)

By plugging these (2.25) into (2.24) with g(r) above, one obtains the final expression for

the geometric superpotential as follows:

W̃ (r, µ) =
1

4ρ(r)2
[
(cosh 2χ(r) + 1) cos2 µ− ρ(r)8 (cosh 2χ(r) − 3) sin2 µ

]
, (2.26)

which is exactly the same as the one [7] found in other two cases. When cos2 µ = 3
4 , then

we have W̃ (r, µ) = −1
2W (ρ, χ) where W (ρ, χ) is a superpotential in 4-dimensions.

Comparing with the previous 4-form fields at the IR fixed point, the mixed 4-form

fields Fµνρ5, F4mnp and F45mn where µ, ν, ρ = 1, 2, 3 and m,n, p = 6, 7, · · · , 11 are new if we

look at the (B.1). Indeed, they are not forbidden to occur by the global symmetry once we

suppose that the 4-dimensional metric has the domain wall factor e3A(r) that breaks the

4-dimensional conformal invariance. At both UV and IR critical points, the 4-dimensional

spacetime becomes asymptotically AdS4 which has conformal invariance and the mixed

field strengths should vanish there.
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In order to check the remaining Maxwell equation, one needs to know the elfbein

determinant E =
√−g11 and it is given by

E =
1

4 ρ(r)
4

3

9 · 3
1

4 e3A(r) L̂7 cosh
4

3 χ(r) (y − 1) cos5 µ sin θ sinµ
(
cos2 µ+ ρ(r)8 sin2 µ

) 2

3 ,

by computing the determinant of 11-dimensional metric (2.1). The right hand side of

Maxwell equation of (2.14) contains also the determinant of 11-dimensional inverse metric.

Written in terms of coordinate basis, one should also transform the 4-forms in (B.1) with

frame basis of the appendix B into the ones with coordinate basis via eam appearing in (2.12).

On the other hand, the left hand side of Maxwell equation has 4-form with upper indices

which can be determined by using the 11-dimensional inverse metric and 4-forms with lower

indices in the coordinate basis. We do not present them here because they are rather com-

plicated. We have checked that all of the Maxwell equations of motion are indeed satisfied.

Thus we have established that the solutions (2.22), (2.19), and (2.26) actually consists

of an exact solution to the 11-dimensional supergravity characterized by bosonic field equa-

tions (2.14), provided that the deformation parameters (ρ(r), χ(r)) of the 7-dimensional

internal space and the domain wall amplitude A(r) develop in the AdS4 radial direction

along the SU(2) × U(1) × U(1)R-invariant RG flow (2.2).

So far, we have focused on c = 1(in other words, for c 6= 0 one can rescale y to set c = 1

and the metric has one parameter family characterized by a) in the S2 metric of (2.4) and

the coefficient is given by (1 − y). For c = 0 where a is a trivial rescaling parameter, then

the metric of (2.4) leads to the standard metric of T 1,1 space. Then one can follow the

procedure for the second solution in [7]. On the other hand, for a = 1 where a is defined

in (2.5) and c is a trivial rescaling parameter, the metric provides the round five-sphere S5

metric. Then one takes the first solution of [7]. Schematically, we draw these solutions in

figure 1. In 11-dimensional view point, the three independent RG flows characterized by

S5 − flow : SU(3) × U(1)R,

T 1,1 − flow : SU(2) × SU(2) × U(1)R,

Y p,q − flow : SU(2) × U(1) × U(1)R,

arrive at the IR fixed point at which they have common Ricci tensor (2.20). Depending on

their global symmetry, the internal 3-forms, in each case, have the right structures in the

exponential function with common sinhχ(r) dependence. However, the 3-form in the M2-

brane world-volume directions with the same geometric superpotential (2.26) is common to

three different solutions. It is surprising that although the 4-forms are different from each

other completely, the squares of these 4-forms appearing in the right hand side of Einstein

equation (2.14) give rise to the same expressions.

3 Conclusions and outlook

We have derived the 11-dimensional Einstein-Maxwell equations corresponding to the

N = 2 SU(2) × U(1) × U(1)R-invariant RG flow in the 4-dimensional gauged supergrav-

ity. The AdS4 supergravity fields can be interpreted as the geometric parameters for the
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Figure 1. The RG flow starting from SO(8) UV fixed point to SU(3)×U(1)R IR fixed point and its

three 11-dimensional lifts. The theory(in lower plane) flows a SU(3) × U(1)R-invariant fixed point

at which (ρ, χ) = (1.15, 0.66) as they vary with respect to r according to (2.2) [4] starting from

(ρ, χ) = (1, 0). In its 11-dimensional lift, there exist three flows. At each curve, the 11-dimensional

metric and 4-forms vary with the deformation parameters (ρ, χ). The solutions to the upper and

lower ones were found in [7] while the solution to the middle one is found in this paper. The Ricci

tensor for three curves is the same and given in the appendix A. The common U(1)R factor in

the global symmetry plays the role of N = 2 supersymmetry along the whole three flows. Either

S5-flow or T 1,1-flow can be obtained from the more general Y p,q-flow by taking the limit a = 1 or

c = 0 respectively.

7-dimensional internal space. Provided that the r-dependence of these fields is controlled

by the RG flow equations, we have found the exact solution to the 11-dimensional field

equations. With this solution, one would say that the SU(2)×U(1)×U(1)R-invariant holo-

graphic RG flow can be lifted to an N = 2 M2-brane flow in M-theory. The field strengths

must be subject to the nontrivial boundary conditions at both UV and IR critical points.

It is natural to ask what is corresponding dual gauge theory for the previous 11-

dimensional background in the context of AdS/CFT. According to the observation of T 1,1-

flow [14], the quiver U(N)3 Chern-Simons gauge theory for the M2-branes probing the cone

over Q1,1,1 space provides the quiver diagram for a partial resolution [23] of Q1,1,1 theory

with U(N)3 gauge group and two SU(2) doublets and an adjoint field. It is known that

in [24], the higher dimensional analog of the Y p,q space was found(and denoted by Xp,q)

and can be expressed as a U(1) bundle over 6-dimensional Einstein-Kahler space which is

a 2-bundle over a 4-dimensional Einstein-Kahler space. Therefore, the partial resolution of

the Xp,q might be a candidate for the dual gauge theory. The spin-2 KK modes around a

warped product of AdS4 and a squashed and stretched 7-manifold can be obtained. The
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mass-squared in AdS4, in principle, can be determined and it is an open problem to find

out what N = 2 SCFT operators in Chern-Simons matter theory are.

As mentioned in [14], one can study the other possibility where there exists a bigger

SU(3)×U(1)×U(1)R symmetry for the 11-dimensional lift of the same RG flow equations

we discussed in this paper. For the CP2 choice for the Einstein-Kahler 2-fold inside of

Xp,q space, the isometry is given by SU(3)× U(1) ×U(1)R. In the sense that this has two

U(1)’s, the construction for the 4-form field strengths is similar to each other. That is,

among three U(1) symmetries, only two U(1)’s are preserved. Then it is nontrivial to find

out the 4-forms which should preserve these symmetries explicitly.

There exists N = 1 G2 critical point in 4-dimensional gauged supergravity. That is,

this IR critical point is located at some point in the lower plane of figure 1. The 11-

dimensional lift of this theory, which is present in the upper plane of figure 1, was found

in [6], as mentioned in the introduction. One can think of other 11-dimensional solution

with same RG flow equations for the AdS4 supergravity fields. Inside of 7-dimensional

ellipsoid, there exists a round six-sphere S6 which has SO(7) symmetry. It is an open

problem whether one can embed the appropriate Einstein-Kahler 2-fold inside of S6. Of

course, the original global symmetry G2 should break into a smaller group symmetry.
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A The Ricci tensor in frame basis

The 11-dimensional metric (2.1) with (2.10) and (2.13) generates the Ricci tensor in frame

basis as follows:

R1
1 = − 1

9
√

3L̂2u
2

3 v
4

3 (c2µ + u2s2µ)
8

3

2
[
2u8v2(v2 − 1)s4µ + 2v2(v2 + 3)c4µ

+u6
[
−2(−5 + c2µ) + v2(−11 + c2µ) + 4v4c2µ

]
s2µ

+ u2
[
12c2µ + v2(9 − 13c2µ) + 4v4s2µ

]
c2µ + u4

[
6s22µ + v2(5 − 8c2µ + 5c4µ) + v4s22µ

]]

= R2
2 = R3

3 = −2R6
6 = −2R7

7 = −2R8
8 = −2R9

9,

R4
4 =

1

18
√

3L̂2u
2

3 v
10

3 (c2µ + u2s2µ)
8

3

[
−4v2(2v4 − 21v2 + 27)c4µ − 4u8v2(2v4 − 5v2 + 3)s4µ

+2u2v2
[
−48 + 60c2µ + v2(15 − 43c2µ) + 4v4s2µ

]
c2µ

−2u6
[
24c2µ − 4v2(7 + 4c2µ) + v4(17 + 5c2µ) − 4v6c2µ

]
s2µ

− u4v2
(
33 − 48c2µ + 27c4µ + 4v2

[
2 + 4c2µ − 7c4µ + v2(−1 + c4µ)

])]
,

R5
4 =

1

6
√

3L̂2v
1

3 (c2µ + u2s2µ)
8

3

u
1

3

(
−2c2µ(v

2 − 3)

+ u2
[
−5 − 11c2µ + 14v2c2µ + u2

(
−11 + 9c2µ + 2s2µ

[
u2 − v2(u2 − 7)

])])
s2µ = R4

5,
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R5
5 =

1

18
√

3L̂2u
2

3 v
4

3 (c2µ + u2s2µ)
8

3

[
4u8v2(v2 − 1)s4µ + 4v2(v2 + 3)c4µ

+u4
[
6 − 6c4µ + v2(19 − 16c2µ + c4µ) + 5v4(−1 + c4µ)

]

+ 4u2
[
6c2µ+v2(3−!5c2µ)+2v4s2µ

]
c2µ+4u6

[
−1−v2+v4+(−7+5v2+v4)c2µ

]
s2µ

]
,

R10
10 =

1

18
√

3L̂2u
2

3 v
10

3 (c2µ + u2s2µ)
8

3

[
4u8v4(v2 − 1)s4µ + 4v4(v2 + 3)c4µ

+u4v4
[
−2(−11+8c2µ+c4µ)+5v2(−1+c4µ)

]
+2u2v2c2µ

[
12c2µ+v2(9−13c2µ)+4v4s2µ

]

+ 2u6
[
24c2µ − 2v2(7 + 13c2µ) + v4(1 + 13c2µ) + 4v6c2µ

]
s2µ

]
,

R11
10 = −2u

7

3 (v2 − 1)(u2 + 2v2 − 3)s2µ

3
√

3L̂2v
7

3 (c2µ + u2s2µ)
5

3

= R10
11,

R11
11 =

1

9
√

3L̂2u
2

3 v
10

3 (c2µ + u2s2µ)
8

3

[
2u8v4(v2 − 1)s4µ + 2v4(v2 + 3)c4µ

+u2v2
[
−24c2µ+v2(27+5c2µ)+4v4s2µ

]
c2µ+u4v2

[
−6s22µ+2v2(4−4c2µ+c4µ)+7v4s22µ

]

+ u6
[
−24c2µ + 8v2(2 + 5c2µ) − v4(5 + 29c2µ) + 4v6c2µ

]
s2µ

]
, (A.1)

where we introduce

u(r) ≡ ρ(r)4, v(r) ≡ coshχ(r).

We also use a simplified notation for the trigonometric function as in sµ ≡ sinµ and so on.

By substituting the IR fixed point values (2.17) into (A.1), one sees R 5
4 vanishes and the

other components reduce to (2.20).

B The 4-form field strength in frame basis

One can read off the 4-forms from (2.19), (2.22) and (2.26) and they are given in the frame

basis as follows:

F1234 =
3

1

4

[
c2µ(−5 + cosh 2χ) + 2ρ8(−2 + c2µ + s2µ ρ

8 sinh2 χ)
]

L̂ ρ
4

3 cosh
2

3 χ (c2µ + ρ8 s2µ)
4

3

,

F1235 =
3

1

4 ρ
8

3

[
1 + cosh 2χ+ ρ8 (−3 + cosh 2χ)

]

L̂ cosh
5

3 χ (c2µ + ρ8 s2µ)
4

3

sµ cµ,

F4568 = − 3
1

4 (−3 + ρ8) sinh 2χ

2L̂ ρ
4

3 cosh
5

3 χ (c2µ + ρ8 s2µ)
1

3

cα+ψ = −F4579 = F469 10 = F478 10,

F4569 =
3

1

4 (−3 + ρ8) sinh 2χ

2L̂ ρ
4

3 cosh
5

3 χ (c2µ + ρ8 s2µ)
1

3

sα+ψ = −F468 10 = F4578 = F479 10,

F468 11 = −3
1

4 ρ
8

3 sech
5

3χ sinhχ
[
1 + cosh 2χ+ ρ8 (−3 + cosh 2χ)

]

2L̂ (c2µ + ρ8 s2µ)
4

3

s2µ sα+ψ

= −F479 11,
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F469 11 = −3
1

4 ρ
8

3 sech
5

3χ sinhχ
[
1 + cosh 2χ+ ρ8 (−3 + cosh 2χ)

]

2L̂ (c2µ + ρ8 s2µ)
4

3

s2µ cα+ψ

= F478 11,

F568 10 =
3

1

4 ρ
8

3 (−1 + ρ8) sinhχ

L̂ sech
1

3χ (c2µ + ρ8 s2µ)
4

3

s2µ sα+ψ = −F579 10,

F568 11 = − 3
1

4 (3 + ρ8) sinhχ

L̂ ρ
4

3 cosh
2

3 χ (c2µ + ρ8 s2µ)
1

3

sα+ψ = −F579 11 = F69 10 11 = F78 10 11,

F569 10 =
3

1

4 ρ
8

3 (−1 + ρ8) sinhχ

L̂ sech
1

3χ (c2µ + ρ8 s2µ)
4

3

cα+ψ s2µ = F578 10,

F569 11 = − 3
1

4 (3 + ρ8) sinhχ

L̂ ρ
4

3 cosh
2

3 χ (c2µ + ρ8 s2µ)
1

3

cα+ψ = F578 11 = −F68 10 11 = F79 10 11. (B.1)

For simplicity, we ignored the r dependence on ρ and χ in the right hand side of (B.1).

When we substitute the UV fixed point value (2.15) into (B.1), then only F1234 is nonzero.

When we substitute the IR fixed point values (2.17) into (B.1), one sees Fµνρ5, F4mnp and

F45mn where µ, ν, ρ = 1, 2, 3 and m,n, p = 6, 7, · · · , 11 vanish due to the sinhχ(r) and the

other components reduce to (2.21). These vanishing 4-forms have either 1 + cosh 2χ +

ρ8 (−3 + cosh 2χ), which leads to (3 − ρ8) for the condition cosh 2χ = 2, or (−3 + ρ8).

This nontrivial boundary conditions also occur for the N = 1 G2 M2-brane flow in 11-

dimensions [6].
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